
Sébastien Mathier

www.excel-pratique.com/en



While :

Loops make it possible to repeat instructions a number of times, which can save a lot of time.

The following code puts sequential numbers into each of the cells in column A (from row 1 to 12) :

Sub while_loop()

    Cells(1, 1) = 1

    Cells(2, 1) = 2

    Cells(3, 1) = 3

    Cells(4, 1) = 4

    Cells(5, 1) = 5

    Cells(6, 1) = 6

    Cells(7, 1) = 7

    Cells(8, 1) = 8

    Cells(9, 1) = 9

    Cells(10, 1) = 10

    Cells(11, 1) = 11

    Cells(12, 1) = 12

End Sub

This code is very repetitive ...

Imagine if we had to number hundreds of cells instead of just 12 ... Now you understand why loops can be useful.

Here is an example of an empty While loop :

Sub while_loop()

    While [condition]

        'Instructions

    Wend

End Sub

As long as the condition is true, the instructions in the loop will continue to be executed (careful not to create an infinite

loop).

And here is the repetitive macro introduced above, converted into a While loop :

Sub while_loop()

    Dim num As Integer

    num = 1 'Starting number (in this case, this is both the row number and the number that

will be placed in each cell)

    While num <= 12 'As long as the num variable is <= 12, the instructions will loop

       Cells(num, 1) = num 'Numbering

       num = num + 1 'The number is increased by 1 each time the instructions loop

    Wend

       

End Sub

Using this loop macro, all we would have to do if we wanted to number 500 lines instead of just 12 would be to replace

12 with 500 ...



Do Loop :

This is another way to write a loop command that works the same way as While Wend (as long as the condition is true,

the instructions contained within the While command will loop) :

Sub do_while_loop()

    Do While [condition]

        'Instructions

    Loop

End Sub

In this case, the conditions can also be placed at the end of the Do Loop loop, which means that the instructions will

definitely be executed at least once :

Sub do_while_loop()

    Do

        'Instructions

    Loop While [condition]

End Sub

Rather than repeating the loop as long as the condition is true, it is also possible to exit the loop when the condition is

true by replacing While with Until :

Sub do_while_loop()

    Do Until [condition]

        'Instructions

    Loop

End Sub



For :

Sub for_loop()

    For i = 1 To 5

        'Instructions

    Next

End Sub

The For loop will be repeated here 5 times.

At each repetition of the loop, the variable i is automatically incremented by 1 :

Sub for_loop()

    For i = 1 To 5

        MsgBox i

    Next

End Sub

Early exit from a loop :

It's possible to exit a For loop early by using the following instruction :

Exit For 'Exit a For loop

Here is an example of this :

Sub for_loop()

    Dim max_loops As Integer

    max_loops = Range("A1") 'In A1 : we have defined a limit to the number of repetitions

    For i = 1 To 7 'Number of loops expected : 7

       If i > max_loops Then 'If A1 is empty or contains a number < 7, decrease the number of

loops

           Exit For 'If the condition is true, we exit the For loop

       End If

   

       MsgBox i

    Next

End Sub

The other Exit instructions :

Exit Do 'Exit a Do Loop loop

Exit Sub 'Exit a procedure

Exit Function 'Exit a function



Exercise :

To practice what we have just learned, we'll go through the step-by-step process of creating a macro to add background

colors to a 10x10 checkerboard of cells (in red and black) starting from the currently selected cell. See below :

Here's the first step of the exercise :

Sub loops_exercise()

    Const NB_CELLS As Integer = 10 'Number of cells to which we want to add background colors

    '...

   

End Sub

Let's start out by adding a For loop to add black backgrounds to the cells in column A (The NB_CELLS constant being

10). See below:



Take a moment to create this loop on your own before you look at the solution ...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The solution :

Sub loops_exercise()

    Const NB_CELLS As Integer = 10 'Number of cells to which we want to add background colors

    For r = 1 To NB_CELLS 'r => row number

   

        Cells(r, 1).Interior.Color = RGB(0, 0, 0) 'Black

    Next

   

End Sub



The next step is making every other cell's background red with an If instruction (based on whether the row numbers are

even or odd). See below :

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.



The solution :

Sub loops_exercise()

    Const NB_CELLS As Integer = 10 'Number of cells to which we want to add background colors

    For r = 1 To NB_CELLS 'r => row number

   

       If r Mod 2 = 0 Then 'Mod => is the remainder from division

           Cells(r, 1).Interior.Color = RGB(200, 0, 0) 'Red

       Else

           Cells(r, 1).Interior.Color = RGB(0, 0, 0) 'Black

       End If

    Next

   

End Sub

The condition If r Mod 2 = 0 means : if the remained when we divide r by 2 equals 0 ...

Only row numbers that are even will have a remainder of 0 when they are divided by 2.

Now create a loop that executes the loop we already have for the 10 columns. See below :

.

.

.

.

.

.

.

.

.

.

.

.

.

.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The solution :

Sub loops_exercise()

    Const NB_CELLS As Integer = 10 '10x10 checkerboard of cells

    For r = 1 To NB_CELLS 'r => row number

   

        For c = 1 To NB_CELLS 'c => column number

       

           If r Mod 2 = 0 Then

               Cells(r, c).Interior.Color = RGB(200, 0, 0) 'Red

           Else

               Cells(r, c).Interior.Color = RGB(0, 0, 0) 'Black

           End If

           

        Next

    Next

   

End Sub

Now the second loop is nested within the first one.



To achieve this result ...

Replace :

If r Mod 2 = 0 Then

With :

If (r + c) Mod 2 = 0 Then

All that's left to do is to edit the code so that the checkerboard is created starting from the currently selected cell (rather

than A1). See below :

.

.

.

.

.

.

.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The solution :

Sub loops_exercise()

   Const NB_CELLS As Integer = 10 '10x10 checkerboard of cells

   Dim offset_row As Integer, offset_col As Integer ' => adding 2 variables

   

   'Shift (rows) starting from the first cell = the row number of the active cell - 1

   offset_row = ActiveCell.Row - 1

   'Shift (columns) starting from the first cell = the column number of the active cell - 1

   offset_col = ActiveCell.Column - 1

   

   For r = 1 To NB_CELLS 'Row number

   

        For c = 1 To NB_CELLS 'Column number

       

            If (r + c) Mod 2 = 0 Then

            'Cells(row number + number of rows to shift, column number + number of columns to

shift)

                Cells(r + offset_row, c + offset_col).Interior.Color = RGB(200, 0, 0) 'Red

            Else

                Cells(r + offset_row, c + offset_col).Interior.Color = RGB(0, 0, 0) 'Black

            End If

           

        Next

   Next

   

End Sub

© Excel-Pratique.com - PRIVATE USE ONLY


